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Is the Dimension of Chaotic Attractors 
lnvariant under Coordinate Changes? 

E. Ott, 1 W. D.  Withers, 2 and J. A. Yorke 2'3 

Several different dimensionlike quantities, which have been suggested as being 
relevant to the study of chaotic attractors, are examined. In particular, we 
discuss whether these quantities are invariant under changes of variables that 
are differentiable except at a finite number of points. It is found that some are 
and some are not. It is suggested that the word "dimension" be reversed only for 
those quantities have this invariance property. 
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1. INTRODUCTION 

Recently, researchers in many fields of science have shown that objects with 
fractional dimension m play an important, sometimes crucial, role in the 
problems they consider. In these various research contributions, one finds a 
variety of definitions of dimension. In particular, there exist concepts of 
dimension for a set in a metric space and, in addition, concepts of dimension 
for a probability measure in a metric space. (A probability measure is one 
for which the measure of the entire space is 1.) See Farmer etal .  ~2) for a 
discussion and review of metric and measure dimensions within the context 
of chaotic attractors. As an example of a metric space dimension we mention 
the Hausdorff dimension (a definition of Hausdorff dimension is given in 
Section 4). As an example of a probability measure dimension we give, 
below, the definition of the information dimension, ~3) which we denote d~. 
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Def in i t ion  1. 

Z '7 
d1(fl) = lim "= Pi In Pi (1.1) 

~-~o in e 

where the support of the measure/~ has been covered by N(e) cubes of edge 
length e, and Pi denotes the total probability measure within the ith such 
cube. 

For the various definitions of dimensions of a probability measure 
considered in Ref. 2, Farmer et al. found that all these take on a common 
value for the examples of chatoic attractors given in that paper. Thus they 
conjecture that this is true in general, and, based upon this equality of 
dimensions for probability measures, they call their common value "the 
dimension of the measure." More recently, Hentschel and Procacia (4) and 
Grassberger tS) have introduced certain scaling exponents for a measure in a 
metric space. These scaling exponents, which we denote dq, depend on a 
continuous parameter q, and, in general, are unequal for different values of q. 
Thus, if dq is admitted to be a probability measure dimension, then 
probability measure dimensions can take on infinitely many different values 
for a single measure and there is no single "dimension of the measure." This 
situation brings into focus the question of what we mean by a dimension. 
While we do not here propose a general consistent answer to this question, 
we do propose a requirement that a quantity should satisfy in order that it be 
called a dimension; in particular, we require that all dimensions be invariant 
under "reasonable" changes of variables. It will be shown in this paper that 
the dq fail this test for q vs 1, and so, according to our criterion, should not 
be called dimensions. On the other hand, for the coordinate changes we 
consider, both the information dimension and the Hausdorff dimension are 
invariant. 

The scaling exponents d o introduced in Refs. 4 and 5 are given by 

"= Pi 
- -  ( 1 . 2 )  dq(u) In 

Thus for q = 0 we recover the definition of the "capacity" of a set, 

In N(e) 
do(B ) = do(V ) = tim ln(1/Q (1.3) 

where N(e) is simply the number of e cubes needed to cover the support 
set V. [Note that (1.3) is defined for any set (when the limit exists) and so 
does not require a probability measure (i.e., it does not depend on the Pi); 
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hence, d o might be considered as a candidate for being a metric dimension. 
However, since it fails the coordinate change test, the capacity is not a 
proper metric dimension.] In addition, Hentschel and Procaccia (4) show that 
the information dimension can be obtained from dq by taking the limit as q 
aprpoaches one in Eq. (1.2), 

d I = lim dq 
q ~ l  

Furthermore, they show that the dq for q 4:1 can be used to obtain useful 
bounds on d I. 

This paper is organized as follows. In Section 2 we consider the case 
q > 1 and present examples of maps with attractors which have a smooth 
invariant probability density and for which dq can be altered by fairly simple 
changes of variables. In Section 3 we consider the case of q < 1 and show 
that dq for a Cantor set is not invariant under coordinate changes. Finally, in 
Section 4 it is shown that the Hausdorff dimension and information 
dimension are invariant for the type of variable changes considered in 
Sections 2 and 3. 

Based on these results we believe that there are only two proper types of 
dimension definitions appropriate for attractors, metric dimensions 
(Hausdorff dimension) and probability measure dimensions, and that 
members of these classes of dimension definitions take on a value which is 
the same for all members of the class (of course, the values of the metric 
dimension may be different from the value of the probability measure 
dimension). 

To conclude this section, we comment on the type of "reasonable" 
variable changes used in Sections 2-4. These variable changes are invertible, 
and they have a derivative which is nonzero and finite except at a finite 
number of points. In particular, the variables changes considered do have 
infinite derivatives at certain points. (The dq a r e  invariant for changes of 
variables when the derivative and its inverse are both uniformly bounded.) 

2. CHANGE OF dq UNDER VARIABLE TRANSFORMATION 
FOR q > 1 

As a simple example consider the logistic map, 

xn+ 1 = 4xn(1 - x . )  

For almost any initial condition x 0 C [0, 1], this map produces an invariant 
density 

1 
fl(X) = n[x(1 -- x)] 1/2 
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coordinates for x E [0, 1 ]. Now introduce the change of  , (6) 

f~ 1 s in - l (1  - 2x) 
y= L(x')ax'= T -  

with sin -~ defined to be n/2 ~ sin-~(1 - 2x) > / - re /2  for x ~ [0, 1]. Using 
this change of variables, the original logistic map is transformed to the well- 
known "tent map,"  

2y, ,  for y ,  < 1/2 
Y,+I = 1 - 2 y , ,  for y , )  1/2 

which for almost every initial condition Y0 E [0, 1] produces the invariant 
density, 

f ( y ) =  1 

for y E [0, 1 ]. Thus Pi = e in Eq. (1.2) and dq = 1 for all q for the density 

f(y). 
Now consider dq corresponding to f ~ ( x ) .  Divide the interval [0, 1] into 

2K cells of  length e = 1/(2K), where K is an integer. The fraction of the 
measure in the ith cell is 

i8 

pi = f~ L(x) clx 
i--1)~ 

For  1/2 ~> is > 0, 

2 e1/2[il/2 (i 1) 1/2 ] 
p i  ~ - -  - _ 

and we have the estimate 

Pi  ~ (e / i )  1/z for i = 1 ..... K 

Thus, since f l ( x  ) is symmetric about x = 1/2, for q > 1, q r 2, 

s? 
i = l  i=1 

F q/2 

- -  q / 2 - - 1  [1--(2~) 0/2-11 

t eq/2 for q > 2 

(e q-I  for q < 2 
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Hence, Eq. (1.2) yields 

1 for q < 2  

q 
for q > 2  

2(q -- 1) 

Thus, for q > 2 the dq for f l  are less than 1, while dq = 1 fora?, and we have 
demonstrated a change of dq when making a change of variables for the case 
q > 2 .  

We can extend this result for q > 2 to any q > 1, as follows. We assume 
(and later verify) that there exist maps, x n + l =  gl(x,), on the interval [0, 1] 
with g t (0 )=  g l (1)=  0 and g l (1 /2 )=  1, such that, for almost any initial 
condition x C [0, 1 ], an invariant density, f t  is generated where 

f (x) = Ix(1 -- x)] 1-1/2/ 

and a is chosen so that floft(x ) dx--- 1. (Our previous example corresponds 
to the case l =  1.) Proceeding as before, one can introduce a change of 
variables y(x)= f~fl(x')dx', which transforms the map gl to the tent map. 
Upon applying Eq. (2) to f t  and proceeding as in the case I = 1, we obtain 

dq ~-- 

2l 
1 for q < 2l---Z~ 

2l 
q for q > - -  2l(q- 1) 2 I -  1 

Since dq < 1 for q > 2l/(2l- 1) and the quantity 2l/(2l- 1) can be made 
arbitrarily close to 1 by increasing l, we have demonstrated a change of 
variables which changes dq for any q > 1. To find the map g~ giving the 
invariant density f t ,  simply apply the change of variables y = f~f t (x ' )  dx' to 
the tent map. In this way, one can readily verify that there is a 2Lorder 
maximum at x - - 1 / 2 ,  i.e., g t ( x ) ~ l - ( x - 1 / 2 )  21 near x = 1 / 2 .  (Our 
estimates in this section have been made in an intuitive manner without 
careful attention to magnitude of the errors, but all these arguments can be 
made rigorous.) 

An analysis can also be developed to show that dq for a Cantor set can 
be altered for q > 1. We omit this treatment here since the case treated in 
this section is more transparent (although also more special). 
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3. CHANGE OF dq UNDER VARIABLE TRANSFORMATIONS 
FOR q < 1 

3.1. Capacity: The Case q = 0 

One example of  a compac t  s e t  whose capaci ty d 0 and Hausdorf f  
dimension d n differ is given by a sequence {x,: n = 1, 2,...}, which converges 
to zero sufficiently slowly. We will use this idea in changing the capaci ty  of  
a set by a change of  variable. 

Fix 0 < a <  1 and e > 0 .  Let x , = e n  -~ for n = l , 2  ..... We will show 
that  the capaci ty  of  the set {x,} is at least l/(a + 1). Note that  x ,  - x , +  1 = 
e n - ~ ' - e ( n +  1)-=>/--(d/dn)(cn-=)=aen-% Suppose we cover the set 
{x,} with open intervals of  length e = e a N  -~-1 for some N. Since 
x , - x , + , > ~ e a N  -~-~ for n ~ N ,  each interval of  length caN -~-1 can 
contain at most  one of the points x~, x2,..., XN; and N(e)>~ N. Thus 

log N(g) />  log N 

- l o g  e _log(eaN-~-  1) 

Taking the limit as ~ ~ 0 ( N ~  oo), we obtain d0({Xn} ) > /1 / ( a  + 1). 
Choose fl, 0 < fl < 1. We construct  a Cantor  set in the usual manner,  

Let r = 2-1/~ and 6 = 1 - 2 r .  We remove the middle interval of length fi 
f rom [0, 1]; then the middle intervals of  length re5 from the remaining 
intervals [0, r] and [ 1 -- r, 1]; and so on. For the set C thus constructed both 
dn(C ) and do(C ) equal ft. [Such sets can result f rom chaotic at tractors (e.g., 
the baker ' s - type t ransformations discussed in Ref. 2).] 

The set C contains the sequence {rn: n = 1, 2,..}. If  we make a change 
of  variable y = F(x) = (--log x ) - ~ ,  we have F(r") = ( - l o g  r)- '~  n ~. Since the 
new set in y coordinates F(C) contains this sequence, we have 

1 
do(F(C ) >/d0{[(-log r) -'~ n - " ] } / >  a +~1- 

regardless of  the capaci ty  fl of  the original set C. Thus, if a is chosen 
sufficiently small, we can guarantee that  

d0(F(C)) > a0(C) 

3.2. Arbitrary q < 1 

Let v be a probabil i ty measure on [0, 1] for which 0 < v(0, z] for z > 0, 
and assume each point has measure  0. Let 0 < q < 1 and 0 < a < 1 be fixed 
numbers.  Let p = l / ( 1 - - a ) ( 1 - - q ) >  1. Let G+(x)=2x  + x p and G (x)=- 
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2 x - x  p. Since G ( x )  < G+(x) for x > 0, there exists a change of variable 
y = F ( x ) ,  which is differentiable for 0 < x ~  1 with F ( 0 ) = 0 ,  F ( 1 ) =  1/2, 
such that the new measure /~ defined by l~ (O,y]=c t (O,F(x )]=v(O,x]  
satisfies 

G (y) ~<,u(O, y] ~< G+(y),  0 ~ y  <~ 1/2 

Furthermore, we can require that F be differentiable except at 0. We will 
show that dq(l~) is at least a, regardless of the dimension of v. 

Choose s > 0. Let x o = (s/2) lip. We will assume that s is sufficiently 
small that x o ~< 1/2. For x ~< x 0, we have 

~ ( x  - s, x]  = ~ (o ,  x ]  - ~ (o ,  x - ~1 

> G _ ( x )  - G + ( x  - 6) 

) 2x - x ~ - 2x + 2e - (x - s) v 

) 2s - 2x p 

) 2s - 2x~ ) s 

Let p~=/ t ( ( i - -  1)s, is], i =  1, 2,..., 1/2. Then 

[1/(q-- 1)] log 2 Pq 
log 6 log s 

[1/(q - 1)] log Y" pq 
/> 

where ~ '  is the sum restricted to i ~ Xo/e. If i ~ Xo/e, then ie <. x o, and from 
the above we have Pi ~> s. Thus 

[1/(q-- 1)] l o g ~ p ~ )  

log e 

>I 

[ 1 / ( q -  1)] log[(1/e)Xo eq] 

log 8 

[ l / ( q -  1)] log(eZ/P-l+q2 -~/') 

log e 

[ 1 / ( q -  1)] log(e"(q-1)2-1/v) 

log 8 

Since 

lira [ 1 / ( q -  1)] log(e'~(q-1)2 - l /v)  
e-,0 log e 

we have dq(p) >/a. 
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4. INVARIANCE OF INFORMATION AND HAUSDORFF 
D IMENSIONS 

4.1. Information Dimension 

We now argue that the information dimension of a probability measure 
v on [0, 1] is invariant under coordinate changes y = F ( x )  of the type 
described in this paper. First we consider the special cases where F '  and 
1IF' are bounded by some integer k. The new measure/~ is defined by/~(J) = 
v(F- l (J) )  when J is an interval. For  any measure v and ~ > 0, let p , =  
v([ne, ne + e)) and write 

H(v,  ~) = -- ~ Pn In p .  
t l  

Then it can be shown that the bound on the derivative implies (v) 

IH(v, e) - H(/u, ~)[ <~ ln(2k) 

It follows then that v and ~t have the same information dimension. 
We now consider the case in which the derivative is unbounded or is 0 

on a finite set. Choose Sa to be an open set with v(Sa) = 6 where S~ consists 
of  a finite collection of  intervals, and assume that on [0, 1 ] - S~, the change 
of  variables F has IF'l and 1/IF' I bounded. 

Let v 0 and v 1 be any two probability measures having the closure of  
their supports disjoint except possibly at a finite number of  points, and define 
v~ for a C [0, 1] by 

= (1  -  o(E) + 

for all measurable sets E. As can be seen from the definition of  d, it 
follows (3) that 

= (1  - d , ( v o )  + (4.1) 

For  any measurable set S and probability measure v we define a new 
probability measure v s by 

vs(E ) =- vs(S ~ E)/Vs(S) 

In particular, vs(S ) = 1 and Vs([0, 1 ] ) =  0. Now applying these ideas to/z, v, 
and S~ we note that F '  and 1IF' are bounded on S~(=[0,  1] -- S~). Thus 

d1(vs~ ) = d1(/.tF(Sg)) (4.2) 
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Notice that for any measurable  set E 

= ( I  - 6) vs,(E) + 6%(E)  

so v, ,  the measure on the right-hand side, equals v, and (4.1) gives 

d~v = (1 -- c~) d~vs~ + ~dvs, (4.3) 

A corresponding II formula  holds using F(S,). Hence, taking the difference 
and using (4.3) for both g and v yields 

I dzv - d, /.t I < (i  -- a)]dzvs~ - -  d l  /.IF(SC,) l 

+ (~ tdlPs~ - -  dd&(s,~] <~ 6 

The last inequality follows from (4.2) and the fact that  d, vss and dI/.IF(S6 ) 
must be between 0 and 1 since we are considering measures on [0, 1 ]. Since 

is arbitrary,  it follows that div = d1~, which is what  we wished to prove. 
While the result (4.1) seems like a bizarre property for a dimension to 

sat isfy,  we would expect it to have little relevance to at tractor  theory since 
when v is a natural  measure associated with an ergodic at tractor  and S is a 
finite union of  intervals, we expect dr@s) to be independent of  the choice 
of  S. 

4.2. Hausdorff Dimension 

We review the definition of  the Hausdor f f  dimension and the Hausdor f f  
measure of  a set V c R  n. Let a ) 0  and 6 > 0 .  We let { C j : j =  1,2,...} be a 
collection of  disks such that  V c  (] Cj. Unlike the definition of capacity,  we 
allow the disks Cj to vary in size, with diameters ranging from 0 to 6. We 
define 

ms(e,  V) = i n f ~  (diam Cj) s 
J 

choosing the set of  disks {Cj} so that the sum on the right is as small as 
possible. As e decreases, we have fewer collections of  disks {Cj} to choose 
from, and thus ms(e , V) cannot  decrease. We let 

m,~ V = lira ms(6 , V) 
C~0 

Then m~ V is the two-dimensional  Hausdor f f  measure of  V. When a equals 
an integer m ~< n, m s V is essentially the m-dimensional  volume of V. When 
a = O, m s V is the number  of  points in V. 
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For any set V, there is a number dn(V) such that m,~V=-O for 
a > dH(V ) and m,~V-= oo for a < dn(V ). We call dH(V ) the Hausdorff 
dimension of V. For a = dH(V ), rn,, V may take any value from 0 to oo, 
inclusive, depending on V. 

We let F be a mapping from R n to R n (i.e., F is a change of coor- 
dinates) and ask under what circumstances dH(F(V)) is greater than dH(V ). 
If F is differentiable at x then there is an integer n such that 

[ IF (x ) -  F(y)H < n Hx-YII 

For all y with [Ix --y[[ < 1In. Thus we may write 

V =  W U  VlU  V2U V3U.  �9 �9 

where W =  {xE V: F is not differentiable at x} and V , =  {x~ V: 
[IF(x)-F(y)[[  < n ]Ix -YI[ for all y with ttx - y [ ]  < I/n}. Suppose dH(V ) < 
dn(F(V)) and let a be such that dn(V)< a < d~I(F(V)). Then we have 
m a V =  0, while rn,~F(V)= oo. 

Suppose {C,j: j = 1, 2,..} is a collection of disks whose union contains 
In ,  with diameters between 0 and e, where 0 < e < 1/2n. 

Let x: ~ V, n C,j. Then F(C,j) is contained in the disk D,j centered at 
F(xj) and with diameter 2n diam C,:,  and F(V,) is contained in the union of 
the disks D,j.  Moreover, 

~. (diam D,j) '~ = 2an a Z (diam C,j) a 
J J 

Since m s V = 0 and V n c V, we have ma(e, V,) = 0; in other words, the right 
side of the equality above can be made as small as we please by the right 
choice of the disks C,. But then the left side can be made as small as we 
please by the right choice of the disks D, .  Thus 

ma(2ne, F(V,)) = 0 

Thus 
mar(v , )  = lim ma(2ne, F(V,)) = 0 

~ 0  

We will suppose that m,~F(W) is finite. This is true whenever the set W itself 
is finite, as well as when dH(F(W)) < a. Then we have 

maF(V ) << m a r ( w  ) + mar(Va) + m~F(V2) + . . .  < oo 

But by assumption, m,~F(V)= oo. Thus we must have dHF(V ) <~ d n V. We 
may apply the same argument to F -1  to obtain 

dnF(V ) ~- d H V 
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Hence, the Hausdorff dimension is invariant under a wide class of changes of 
variables, including all changes of variables which are differentiable except at 
a finite set of points. 
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